The post Who Powers The AI Revolution—Tech Giants, Utilities Or Both? appeared on BitcoinEthereumNews.com. INDIA – 2021/01/27: In this photo illustration, the logo of Amazon Alexa is seen displayed on a mobile phone screen with The AI (artificial intelligence) revolution written in the background. (Photo Illustration by Idrees Abbas/SOPA Images/LightRocket via Getty Images) SOPA Images/LightRocket via Getty Images Artificial intelligence may run on silicon chips, but its real fuel is electricity. After two decades of steady demand, AI and data centers are causing electricity consumption to soar, which will require utilities and tech giants to collaborate or confront each other. Either way, the aim is for the country to quickly upgrade its network to meet this AI-driven energy surge. Companies like Meta, Oracle, and OpenAI are building large campuses that require reliable, continuous power. This expansion is testing the capacity of a grid designed for a slower digital economy and prompting utilities, regulators, and tech firms to reconsider their roles, partnerships, and investments. “Utilities know how to capitalize the cost of building a transformer like the back of their hand, but can’t capitalize a cloud subscription,” Elizabeth Cook of the Association of Edison Illuminating Companies told the audience during a podcast in which we appeared together. That bias toward physical assets has historically limited investment in operations, data analytics, or predictive tools. Utilities have traditionally been low-risk, capital-heavy institutions. They invest in tangible infrastructure —poles, wires, substations—where costs can be depreciated and returns are assured. The utility industry states that its members often choose to be the first to come in second, implying they let more agile companies lead. Tech giants can move quickly on high-risk, high-reward projects. Kim Getgen, founder of InnovationForce that hosted the podcast, notes that one hyperscaler can outspend the entire energy sector many times over—by some estimates, as much as fortyfold. AI mega-data centers like Stargate, backed by Oracle,… The post Who Powers The AI Revolution—Tech Giants, Utilities Or Both? appeared on BitcoinEthereumNews.com. INDIA – 2021/01/27: In this photo illustration, the logo of Amazon Alexa is seen displayed on a mobile phone screen with The AI (artificial intelligence) revolution written in the background. (Photo Illustration by Idrees Abbas/SOPA Images/LightRocket via Getty Images) SOPA Images/LightRocket via Getty Images Artificial intelligence may run on silicon chips, but its real fuel is electricity. After two decades of steady demand, AI and data centers are causing electricity consumption to soar, which will require utilities and tech giants to collaborate or confront each other. Either way, the aim is for the country to quickly upgrade its network to meet this AI-driven energy surge. Companies like Meta, Oracle, and OpenAI are building large campuses that require reliable, continuous power. This expansion is testing the capacity of a grid designed for a slower digital economy and prompting utilities, regulators, and tech firms to reconsider their roles, partnerships, and investments. “Utilities know how to capitalize the cost of building a transformer like the back of their hand, but can’t capitalize a cloud subscription,” Elizabeth Cook of the Association of Edison Illuminating Companies told the audience during a podcast in which we appeared together. That bias toward physical assets has historically limited investment in operations, data analytics, or predictive tools. Utilities have traditionally been low-risk, capital-heavy institutions. They invest in tangible infrastructure —poles, wires, substations—where costs can be depreciated and returns are assured. The utility industry states that its members often choose to be the first to come in second, implying they let more agile companies lead. Tech giants can move quickly on high-risk, high-reward projects. Kim Getgen, founder of InnovationForce that hosted the podcast, notes that one hyperscaler can outspend the entire energy sector many times over—by some estimates, as much as fortyfold. AI mega-data centers like Stargate, backed by Oracle,…

Who Powers The AI Revolution—Tech Giants, Utilities Or Both?

8 min read

INDIA – 2021/01/27: In this photo illustration, the logo of Amazon Alexa is seen displayed on a mobile phone screen with The AI (artificial intelligence) revolution written in the background. (Photo Illustration by Idrees Abbas/SOPA Images/LightRocket via Getty Images)

SOPA Images/LightRocket via Getty Images

Artificial intelligence may run on silicon chips, but its real fuel is electricity. After two decades of steady demand, AI and data centers are causing electricity consumption to soar, which will require utilities and tech giants to collaborate or confront each other. Either way, the aim is for the country to quickly upgrade its network to meet this AI-driven energy surge.

Companies like Meta, Oracle, and OpenAI are building large campuses that require reliable, continuous power. This expansion is testing the capacity of a grid designed for a slower digital economy and prompting utilities, regulators, and tech firms to reconsider their roles, partnerships, and investments.

“Utilities know how to capitalize the cost of building a transformer like the back of their hand, but can’t capitalize a cloud subscription,” Elizabeth Cook of the Association of Edison Illuminating Companies told the audience during a podcast in which we appeared together. That bias toward physical assets has historically limited investment in operations, data analytics, or predictive tools.

Utilities have traditionally been low-risk, capital-heavy institutions. They invest in tangible infrastructure —poles, wires, substations—where costs can be depreciated and returns are assured. The utility industry states that its members often choose to be the first to come in second, implying they let more agile companies lead.

Tech giants can move quickly on high-risk, high-reward projects. Kim Getgen, founder of InnovationForce that hosted the podcast, notes that one hyperscaler can outspend the entire energy sector many times over—by some estimates, as much as fortyfold.

AI mega-data centers like Stargate, backed by Oracle, SoftBank, and OpenAI, are projected to generate $30 billion in annual revenue by 2028. These firms can build data centers in 12–18 months, while new power plants and transmission lines take at least five years to construct and connect. Why’s that?

Utilities make money by persuading commissions to approve capital spending, but operational investments—like grid analytics—generate lower returns. Tech companies, on the other hand, operate in a free market, giving them more flexibility to quickly allocate capital to meet fast-growing demand.

AI’s Soaring Power Demand

EVERGLADES, FLORIDA – SEPTEMBER 28: In an aerial view, electric power lines are seen attached to the transmission tower along the power grid on September 28, 2023 in the Everglades, Florida. The Federal government announced the distribution of Grid Resilience Formula Grants. The grants will help modernize the electric grid to reduce the impacts of climate-driven extreme weather and natural disasters while also ensuring the reliability of the power sector. (Photo by Joe Raedle/Getty Images)

Getty Images

According to the International Energy Agency, data center electricity demand worldwide will increase by 130% by 2030. The Department of Energy’s Lawrence Berkeley National Laboratory stated that data centers used about 4.4% of total U.S. electricity in 2023 and, depending on the growth of the rest of the economy, are projected to use between 6.7% and 12% of total U.S. electricity by 2028. It cautions that this depends heavily on AI adoption rates and efficiency gains.

The U.S. faces an unprecedented challenge in expanding its grid. Jeff Weiss, executive chairman of Distributed Sun, explained during a virtual press event hosted by the United States Energy Association: “We need to triple the grid. Everything we do today takes 10 years. We need to figure out how to do it in two.” In practice, that means tripling capacity—not literally rebuilding three new grids. One-third of that new capacity will be needed just to support data centers.

Existing generation, transmission, and workforce limits create bottlenecks. Supply chains for turbines, transformers, and other essential parts are insufficient for quick expansion. Regulatory permitting and interconnection procedures, designed for slower growth, cause further delays. High-powered transmission lines, which span multiple states, are extremely difficult to construct.

Despite having speed and capital advantages, tech giants cannot simply replace utilities. They must follow the same permitting, siting, and interconnection rules. So, it doesn’t matter if you are Google or the hometown utility. Meeting with stakeholders and complying with regulators is part of the process.

“You have to deal with the same federal laws, the same citing, the same public support, and the same supply chain,” says Tom Falcone, president of the Large Public Power Council, during the USEA event. “We deal with these issues in our social construct, in the laws and regulations that we have, and we all have to comply with them.”

However, the problem persists: data centers eager to run advanced AI models urgently need power. Utilities, limited by permitting timelines, supply chain issues, and workforce shortages, rarely meet that urgency. Derek Bentley, partner at Solomon Partners, highlighted the gap at the press event: “You can build a data center in 12 to 18 months. But a new power plant takes five years, plus years more to connect.”

Hybrid Solutions and Partnerships

ILLUSTRATION – 10 April 2025, Mecklenburg-Western Pomerania, Schwerin: The apps of various US tech companies, Google, Facebook, WhatsApp, Amazon and X, can be seen on the display of a smartphone. Photo: Jens Büttner/dpa (Photo by Jens Büttner/picture alliance via Getty Images)

dpa/picture alliance via Getty Images

This isn’t just inconvenient; it’s a fundamental mismatch between the 21st-century digital economy and a 20th-century grid. Progressive utilities are, therefore, working with data centers to develop hybrid solutions.

Indeed, some data centers are colocating with natural gas or nuclear facilities, sometimes combined with renewables and battery storage to enhance scale and reliability. These behind-the-meter setups—where power is generated on-site rather than solely from the grid—are becoming more common. These partnerships enable data centers to access power quickly while maintaining grid stability.

That relieves the burden on the central network, which lowers the risk of blackouts and congestion. Still, for those data centers connected to the main grid—in front of the meter—it results in higher revenues for utilities.

“Hyperscalers are more agile than many utilities, and they are more entrepreneurial and have the capital,” says Clinton Vince, head of the U.S. energy practice at the Denton law firm, during the USEA event. “I do think utilities have been working very well with hyperscalers, although the slower utilities will be disadvantaged tremendously.”

He highlights Meta and Entergy, which are partnering in Louisiana to build major infrastructure supporting Meta’s largest and newest data center, called Hyperion. It will be powered by both fossil fuels and renewable energy.

However, the main criticism is that the regulatory system encourages stagnation. Bud Albright, senior adviser at the National AI Association, pointed out during the press event that “The regulatory format is inadequate today to do the kind of build-out that we need, whether it’s behind the meter or in front of the meter.”

Beyond formal oversight, he adds that public opinion also plays a role. Communities wary of new data centers and transmission lines must understand the broader economic and technological benefits of these projects, from jobs to national competitiveness. Utilities and tech companies must prioritize education and outreach to demonstrate the benefits of their services.

Regulation and Public Perception

Rate design is also under review. Pacific Gas & Electric, for example, requires data centers to pay initial interconnection costs and recover them later as the facility earns revenue. This method ensures costs are shared fairly and stops residential customers from subsidizing commercial loads.

“Affordability is top of mind for us,” says Karen Omelas, director of large load program management for Pacific Gas & Electric. “But we see data centers as beneficial load.”

The energy mix is shifting. Solar and battery storage are expanding rapidly. In fact, storage is becoming a crucial tool to meet peak demand, helping utilities and hyperscalers manage load efficiently. Still, reliable, dispatchable power remains essential. Natural gas fulfills much of this need, while coal is dirtier, expensive, and increasingly irrelevant for electricity production.

All of this highlights a bigger truth: the ongoing transformation is a once-in-a-lifetime event. It’s not about who has the largest balance sheet or who is the most nimble. It’s about collaboration at scale. Utilities need to adopt new tools, rethink their operational models, and partner with the very tech companies they might have once seen as rivals. Meanwhile, tech firms must accept that building computers is one thing; powering them responsibly, reliably, and safely for the masses is another.

For policymakers, the challenge remains just as urgent. Innovation in regulation, faster permitting processes, and public education are essential to prevent congestion that could impede the digital economy. Without action, the infrastructure supporting AI—and the industries it drives—are at risk. And it won’t be because of a lack of creativity or ambition, but because of slow, outdated rules.

The AI revolution isn’t just about chips or advances in machine learning. It’s about wires and power plants. It’s also about the invisible links connecting millions of servers to millions of homes. AI’s ultimate limitation is less about computer intelligence and much more about how fast the grid can expand.

Source: https://www.forbes.com/sites/kensilverstein/2025/09/02/who-powers-the-ai-revolution—tech-giants-utilities-or-both/

Market Opportunity
Threshold Logo
Threshold Price(T)
$0.007795
$0.007795$0.007795
+1.11%
USD
Threshold (T) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Tags:

You May Also Like

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

The post Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference appeared on BitcoinEthereumNews.com. Key Takeaways Ethereum’s new roadmap was presented by Vitalik Buterin at the Japan Dev Conference. Short-term priorities include Layer 1 scaling and raising gas limits to enhance transaction throughput. Vitalik Buterin presented Ethereum’s development roadmap at the Japan Dev Conference today, outlining the blockchain platform’s priorities across multiple timeframes. The short-term goals focus on scaling solutions and increasing Layer 1 gas limits to improve transaction capacity. Mid-term objectives target enhanced cross-Layer 2 interoperability and faster network responsiveness to create a more seamless user experience across different scaling solutions. The long-term vision emphasizes building a secure, simple, quantum-resistant, and formally verified minimalist Ethereum network. This approach aims to future-proof the platform against emerging technological threats while maintaining its core functionality. The roadmap presentation comes as Ethereum continues to compete with other blockchain platforms for market share in the smart contract and decentralized application space. Source: https://cryptobriefing.com/ethereum-roadmap-scaling-interoperability-security-japan/
Share
BitcoinEthereumNews2025/09/18 00:25
Horror Thriller ‘Bring Her Back’ Gets HBO Max Premiere Date

Horror Thriller ‘Bring Her Back’ Gets HBO Max Premiere Date

The post Horror Thriller ‘Bring Her Back’ Gets HBO Max Premiere Date appeared on BitcoinEthereumNews.com. Jonah Wren Phillips in “Bring Her Back.” A24 Bring Her Back, a new A24 horror movie from the filmmakers of the smash hit Talk to Me, is coming soon to HBO Max. Bring Her Back opened in theaters on May 30 before debuting on digital streaming via premium video on demand on July 1. The official logline for Bring Her Back reads, “A brother and sister uncover a terrifying ritual at the secluded home of their new foster mother.” Forbes‘South Park’ Season 27 Updated Release Schedule: When Do New Episodes Come Out?By Tim Lammers Directed by twin brothers Danny Philippou and Michael Philippou, Bring Her Back stars Billy Barratt, Sora Wong, Jonah Wren Philips, Sally–Anne Upton, Stephen Philips, Mischa Heywood and Sally Hawkins. Warner Bros. Discovery announced on Wednesday that Bring Her Back will arrive on streaming on HBO Max on Friday, Oct. 3, and on HBO linear on Saturday, Oct. 4, at 8 p.m. ET. Prior to the debut of Bring Her Back on HBO on Oct. 4, the cable outlet will air the Philippou brothers’ 2022 horror hit Talk to Me. ForbesHit Horror Thriller ’28 Years Later’ Is New On Netflix This WeekBy Tim Lammers For viewers who don’t have HBO Max, the streaming platform offers three tiers: The ad-based tier costs $9.99 per month, while an ad-free tier is $16.99 per month. Additionally, an ad-free tier with 4K Ultra HD programming costs $20.99 per month. The Success Of ‘Talk To Me’ Weighed On The Minds Of Philippou Brothers While Making ‘Bring Her Back’ During the film’s theatrical run, Bring Her Back earned $19.3 million domestically and nearly $19.8 million internationally for a worldwide box office tally of $39.1 million. Bring Her Back had a production budget of $17 million before prints and advertising, according to The Numbers.…
Share
BitcoinEthereumNews2025/09/18 09:23
Nomura Alters Fed Rate Cut Prediction for 2025

Nomura Alters Fed Rate Cut Prediction for 2025

Detail: https://coincu.com/markets/nomura-fed-rate-cut-forecast-2025/
Share
Coinstats2025/09/18 12:39