Opens with a 3 AM failure in a “fully autonomous” deployment to show why agentic AI is hard in practice Clarifies the difference between reactive generative AIOpens with a 3 AM failure in a “fully autonomous” deployment to show why agentic AI is hard in practice Clarifies the difference between reactive generative AI

From Generative AI to Agentic AI: A Reality Check

2025/12/15 17:35

:::info This is the first article in a five-part series on agentic AI in the enterprise.

:::

\ The 3 AM Reality Check: It’s 3 AM in a global bank’s operations centre. Six months ago we deployed our first "agentic AI” system, hoping it would run on autopilot through the night. The demo was slick: an AI agent handling support tickets end-to-end, and optimism was high. But now, in the dead of night, that same agent has stalled on a critical task, and a human on-call engineer is scrambling to intervene. This scene captures the sobering reality many early adopters have faced. Agentic AI isn’t magic; it’s hard work to implement well. I learned this first-hand when our much-vaunted autonomous agent frustrated users and even forced us to roll back to manual processes in cases where it failed. We weren’t alone -plenty of companies rushed into “AI agents” only to struggle integrating them into real workflows, sometimes even rehiring staff when the AI fell short. Yet despite these 3 AM wake-up calls, I remain optimistic. Over the past year, I’ve seen enterprise teams evolve from chasing sci-fi dreams to focusing on pragmatic deployments that do deliver value.

\

\ In this series, we’ll explore how to turn that optimism into results. We’ll blend candid lessons from the trenches with a detailed breakdown of architectures, maturity stages, and risk checklists to chart a realistic path for agentic AI in business. The goal is to help you achieve real ROI from autonomous AI systems, knowing what to do, what to avoid, and where the big wins (and faceplants) tend to occur in practice. In this first part, let’s define what agentic AI actually means in contrast to the generative AI craze, and why this distinction matters for enterprises.

\ Generative AI vs. Agentic AI: Most of today’s popular AI apps (ChatGPT, Bard, Microsoft 365 Copilot, etc.) are generative AI systems. They take an input (a prompt or query) and produce an output (text, code, image…). They’re essentially powerful prediction engines: great at generating content, but lacking true autonomy. As Gartner bluntly puts it, current chatbots “do not have the agency to make plans and take action… they respond to user prompts by predicting the most common combination of words” - in other words, they are not examples of agentic AI (https://www.gartner.com/en/articles/intelligent-agent-in-ai). A generative AI might draft an email or answer a question when asked, but it won’t act unprompted or pursue goals on its own. It’s like a clever assistant that waits for instructions.

\ By contrast, agentic AI has a built-in decision loop. An agentic system can be given a high-level goal and will proactively devise and execute a multi-step plan to achieve it, with minimal human guidance. Think of a generative AI assistant as a talented intern: it writes or suggests content when you ask, whereas an agentic AI is more like a proactive team member who can be delegated an outcome and will figure out how to deliver it. A fully realised intelligent agent observes its context (through data feeds, sensors, or system APIs), plans a course of action, acts by calling tools or triggering processes, then observes the results and reflects on what to do next. In essence, it operates in a continuous “Plan - Act - Observe - Reflect” cycle until the goal is achieved or time runs out. This closed-loop autonomy is what differentiates agentic AI from a mere chatbot. A simple way to put it: generative AI answers; agentic AI accomplishes.

\ For example, instead of just generating a monthly report when prompted, an agentic AI could be told “Ensure our website is always up-to-date with the latest product info.” It would proactively monitor relevant data sources, detect when product details change, and then update the website content automatically - all without waiting for a human prompt. It would plan the necessary steps (check database - detect changes - generate updated text - call website API to publish content), execute them, observe if the update succeeded, and adjust if needed. That kind of end-to-end autonomy is nascent but starting to emerge in enterprise pilots. Of course, full autonomy remains an aspirational ideal. Today’s agentic systems still have plenty of constraints and often operate under human oversight (human-in-the-loop) or with fail-safes. In fact, many so-called “AI agents” on the market are really just glorified chatbots with a few scripted actions. True agentic AI is still in its early days, and deploying it is as much about organisational change as it is about technology. Companies are learning to manage the risks of giving AI more agency through sandboxed environments, approval gates for certain actions, and other safeguards before they fully let these digital colleagues loose.

\

\ The rest of this article series will delve into how enterprises are approaching this evolution in practice, distinguishing hype from reality, and moving step by step from assistive tools to truly autonomous agents. Before we dive into architectures and deployment strategies, it’s useful to understand how ready the industry really is. The hype around “AI agents” peaked rapidly, but on the ground, most organisations are still at the start of this journey. Gartner, for instance, predicts that over 40% of agentic AI projects will be cancelled by 2027 due to escalating costs, unclear business value or inadequate risk controls (https://www.gartner.com/en/newsroom/press-releases/2025-06-25-gartner-predicts-over-40-percent-of-agentic-ai-projects-will-be-canceled-by-end-of-2027). In a January 2025 Gartner survey, only 19% of organisations said they had made significant investments in agentic AI, while over half were taking a cautious or wait-and-see approach. The message: we’re in early days, and many early projects have struggled to move beyond proofs-of-concept.

\ So, if you’re feeling behind the curve - don’t worry, you’re not alone. The key is to cut through the hype and approach agentic AI with eyes wide open. In the next part, we’ll map out the typical maturity phases enterprises go through on the road from basic automation to true autonomy. Understanding these “crawl, walk, run, fly” stages will help you gauge where you are now and how to advance safely.

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.03742
$0.03742$0.03742
+0.10%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Binance Whale Loses $11.58 Million as Bitcoin Crashes Below $86,000

Binance Whale Loses $11.58 Million as Bitcoin Crashes Below $86,000

A major trader on Binance suffered an $11.58 million liquidation on a BTC/USDT long position as Bitcoin plunged below the $86,000 level. The entire position was wiped out in a single order, demonstrating the unforgiving nature of leveraged cryptocurrency trading during periods of intense selling pressure.
Share
MEXC NEWS2025/12/16 14:39
Tom Lee: Crypto's Best Years Lie Ahead as Adoption Gap Reveals Massive Growth Potential

Tom Lee: Crypto's Best Years Lie Ahead as Adoption Gap Reveals Massive Growth Potential

Tom Lee, co-founder and head of research at Fundstrat Global Advisors, has offered a compelling framework for understanding Bitcoin's growth runway. His analysis centers on a stark comparison: only 4 million Bitcoin wallets currently hold $10,000 or more, while approximately 900 million IRA and brokerage accounts globally contain at least that amount.
Share
MEXC NEWS2025/12/16 14:46
Quantexa Launches Platform to Reduce Stablecoin Strain on Small Banks

Quantexa Launches Platform to Reduce Stablecoin Strain on Small Banks

The post Quantexa Launches Platform to Reduce Stablecoin Strain on Small Banks appeared on BitcoinEthereumNews.com. In brief Quantexa designed an AML solution for mid-size and community banks. It can help them identify crypto-powered crime, according to Quantexa’s Christopher Bagnall. Stablecoin legislation is expected to unlock new competitors. Quantexa, a data and analytics software firm, introduced a product on Wednesday that’s intended to help smaller financial institutions fight crypto-powered crime in the U.S. The London-based company is now offering a cloud-based, anti-money laundering (AML) solution through Microsoft’s cloud computing platform, which is “designed specifically for U.S. mid-size and community banks,” according to a press release. Quantexa said the pre-packaged product allows teams investigating financial crimes to make faster decisions with less overhead while maintaining accuracy, noting that banks are held to the same compliance standards across the U.S., despite what resources they may have. The product, dubbed Cloud AML, is also meant to reduce “false positives.”  A company survey published earlier this month found that 36% of AML professionals think digital assets will have the biggest impact on the AML industry within the next five years. The product’s debut follows the passage of stablecoin legislation in the U.S. this summer that’s expected to unlock competition from the likes of Bank of Ameerica and Citigroup. With federal rules in place, stablecoins are expected to become more mainstream. Some banks are taking a forward-looking approach toward their products, but most are more concerned about the ability to monitor inflows and outflows within the context of financial crime, Chris Bagnall, Quantexa’s head of financial crimes solutions for North America, told Decrypt. “They’re just trying to find a way to monitor it, and that’s pretty much it,” he said. “Only the most innovative banks, which is a small handful in this space, are focused on making it a business.” Banks may be able to see that a customer received or…
Share
BitcoinEthereumNews2025/09/18 11:28