The post LLMs Fail to Match Specialized AI Trading Bots That Adjust for Risk appeared on BitcoinEthereumNews.com. AI-powered trading hasn’t yet reached an “iPhoneThe post LLMs Fail to Match Specialized AI Trading Bots That Adjust for Risk appeared on BitcoinEthereumNews.com. AI-powered trading hasn’t yet reached an “iPhone

LLMs Fail to Match Specialized AI Trading Bots That Adjust for Risk

2025/12/13 21:11

AI-powered trading hasn’t yet reached an “iPhone moment,” when everyone is carrying around an algorithmic, reinforcement learning portfolio manager in their pocket, but something like that is coming, experts say.

In fact, the power of AI meets its match when faced with the dynamic, adversarial arena of trading markets. Unlike an AI agent informed by endless circuits of self-driving cars learning to accurately recognize traffic signals, no amount of data and modeling will ever be able to tell the future.

This makes refining AI trading models a complex, demanding process. The measure of success has typically been gauging profit and loss (P&L). But advancements in how to customize algorithms are engendering agents that continually learn to balance risk and reward when faced with a multitude of market conditions.

Allowing risk-adjusted metrics such as the Sharpe Ratio to inform the learning process multiplies the sophistication of a test, said Michael Sena, chief marketing officer at Recall Labs, a firm that has run 20 or so AI trading arenas, where a community submits AI trading agents, and those agents compete over a four or five day period.

“When it comes to scanning the market for alpha, the next generation of builders are exploring algo customization and specialization, taking user preferences into account,” Sena said in an interview. “Being optimized for a particular ratio and not just raw P&L is more like the way leading financial institutions work in traditional markets. So, looking at things like, what is your max drawdown, how much was your value at risk to make this P&L?”

Taking a step back, a recent trading competition on decentralized exchange Hyperliquid, involving several large language models (LLMs), such as GPT-5, DeepSeek and Gemini Pro, kind of set the baseline for where AI is in the trading world. These LLMs were all given the same prompt and executed autonomously, making decisions. But they weren’t that good, according to Sena, barely outperforming the market.

“We took the AI models used in the Hyperliquid contest and we let people submit their trading agents that they had built to compete against those models. We wanted to see if trading agents are better than the foundational models, with that added specialization,” Sena said.

The top three spots in Recall’s competition were taken by customized models. “Some models were unprofitable and underperformed, but it became obvious that specialized trading agents that take these models and apply additional logic and inference and data sources and things on top, are outperforming the base AI,” he said.

The democratization of AI-based trading raises interesting questions about whether there will be any alpha left to cover if everyone is using the same level of sophisticated machine-learning tech.

“If everyone’s using the same agent and that agent is executing the same strategy for everyone, does that sort of collapse into itself?” Sena said. “Does the alpha it’s detecting go away because it’s trying to execute it at scale for everyone else?”

That’s why those best positioned to benefit from the advantage AI trading will eventually bring are those with the resources to invest in the development of custom tools, Sena said. As in traditional finance, the highest quality tools that generate the most alpha are typically not public, he added.

“People want to keep these tools as private as possible, because they want to protect that alpha,” Sena said. “They paid a lot for it. You saw that with hedge funds buying data sets. You can see that with proprietary algos developed by family offices.

“I think the magical sweet spot will be where there’s a product that is a portfolio manager but the user still has some say in their strategy. They can say, ‘This is how I like to trade and here are my parameters, let’s implement something similar, but make it better.’”

Source: https://www.coindesk.com/business/2025/12/13/crypto-s-machine-learning-iphone-moment-comes-closer-as-ai-agents-trade-the-market

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.0374
$0.0374$0.0374
+0.05%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Binance Whale Loses $11.58 Million as Bitcoin Crashes Below $86,000

Binance Whale Loses $11.58 Million as Bitcoin Crashes Below $86,000

A major trader on Binance suffered an $11.58 million liquidation on a BTC/USDT long position as Bitcoin plunged below the $86,000 level. The entire position was wiped out in a single order, demonstrating the unforgiving nature of leveraged cryptocurrency trading during periods of intense selling pressure.
Share
MEXC NEWS2025/12/16 14:39
Tom Lee: Crypto's Best Years Lie Ahead as Adoption Gap Reveals Massive Growth Potential

Tom Lee: Crypto's Best Years Lie Ahead as Adoption Gap Reveals Massive Growth Potential

Tom Lee, co-founder and head of research at Fundstrat Global Advisors, has offered a compelling framework for understanding Bitcoin's growth runway. His analysis centers on a stark comparison: only 4 million Bitcoin wallets currently hold $10,000 or more, while approximately 900 million IRA and brokerage accounts globally contain at least that amount.
Share
MEXC NEWS2025/12/16 14:46
Quantexa Launches Platform to Reduce Stablecoin Strain on Small Banks

Quantexa Launches Platform to Reduce Stablecoin Strain on Small Banks

The post Quantexa Launches Platform to Reduce Stablecoin Strain on Small Banks appeared on BitcoinEthereumNews.com. In brief Quantexa designed an AML solution for mid-size and community banks. It can help them identify crypto-powered crime, according to Quantexa’s Christopher Bagnall. Stablecoin legislation is expected to unlock new competitors. Quantexa, a data and analytics software firm, introduced a product on Wednesday that’s intended to help smaller financial institutions fight crypto-powered crime in the U.S. The London-based company is now offering a cloud-based, anti-money laundering (AML) solution through Microsoft’s cloud computing platform, which is “designed specifically for U.S. mid-size and community banks,” according to a press release. Quantexa said the pre-packaged product allows teams investigating financial crimes to make faster decisions with less overhead while maintaining accuracy, noting that banks are held to the same compliance standards across the U.S., despite what resources they may have. The product, dubbed Cloud AML, is also meant to reduce “false positives.”  A company survey published earlier this month found that 36% of AML professionals think digital assets will have the biggest impact on the AML industry within the next five years. The product’s debut follows the passage of stablecoin legislation in the U.S. this summer that’s expected to unlock competition from the likes of Bank of Ameerica and Citigroup. With federal rules in place, stablecoins are expected to become more mainstream. Some banks are taking a forward-looking approach toward their products, but most are more concerned about the ability to monitor inflows and outflows within the context of financial crime, Chris Bagnall, Quantexa’s head of financial crimes solutions for North America, told Decrypt. “They’re just trying to find a way to monitor it, and that’s pretty much it,” he said. “Only the most innovative banks, which is a small handful in this space, are focused on making it a business.” Banks may be able to see that a customer received or…
Share
BitcoinEthereumNews2025/09/18 11:28