Large Language Models are great at poetry and terrible at engineering. If you ask GPT-4 to design a machine, it will hallucinate a bolt that doesn't exist or a battery that explodes. To fix this, I built OpenForge—a multi-agent system that autonomously sources real components, reads their datasheets via computer vision, and validates them against deterministic physics engines. While I used this architecture to build drones, the pattern solves the fundamental bottleneck in automating hardware engineering across any industry.Large Language Models are great at poetry and terrible at engineering. If you ask GPT-4 to design a machine, it will hallucinate a bolt that doesn't exist or a battery that explodes. To fix this, I built OpenForge—a multi-agent system that autonomously sources real components, reads their datasheets via computer vision, and validates them against deterministic physics engines. While I used this architecture to build drones, the pattern solves the fundamental bottleneck in automating hardware engineering across any industry.

How I Built a Generative Manufacturing Engine That Actually Obeys Physics

5 min read

LLMs can write Python scripts, they cannot be trusted to design physical systems where tolerance, voltage, and compatibility matter. A chatbot can tell you how a drone works. It cannot tell you if this specific T-Motor F60 will overheat when paired with this specific 6S battery on a hot day in Texas.

I built OpenForge to prove that we can bridge this gap. I didn't want a chatbot; I wanted a Generative Manufacturing Engine.

Here is the architecture I developed to turn vague user intent into flight-proven hardware, and how this pattern scales far beyond drones.


The Core Philosophy: Trust, but Verify (with Math)

The fatal flaw in most AI engineering is that they treat the LLM as the Source of Truth. In OpenForge, the LLM is merely the Translator.

The architecture relies on a specialized pipeline:

  1. Semantic Translation: LLMs translate slang (I need a fast drone) into constraints (KV > 2500).
  2. Agentic Sourcing: Vision-enabled agents browse the web to find real parts and extract their specs into JSON.
  3. Deterministic Validation: Hard-coded logic gates (Physics, Geometry, Electronics) validate the AI's choices.

If the AI suggests a part that doesn't fit, the Physics Engine rejects it. The AI is forced to learn within the boundaries of reality.


Layer 1: Solving the Data Vacuum

You cannot automate engineering without structured data. The internet is full of unstructured HTML, messy e-commerce sites, and PDFs. Standard scrapers fail here.

I built a High-Agency Refinery Agent. It doesn't just scrape; it investigates.

If a spec (like weight or mounting pattern) is missing, the agent spins up a headless browser (Playwright), takes a screenshot, uses a Vision Model (Gemini) to identify the Specifications tab, clicks it, and extracts the data.

# tools/refine_arsenal.py - The "Active Recon" Loop async def active_recon_session(component, missing_keys): # 1. Vision AI analyzes the UI screenshot ui_plan = await vision_model.analyze( prompt="Find the 'Technical Specs' tab or 'Read More' button.", image=screenshot ) # 2. Playwright acts on the Vision AI's instructions if ui_plan['found_hidden_section']: await page.get_by_text(ui_plan['click_target']).click() # 3. Extraction Agent reads the newly revealed DOM new_specs = await extractor_agent.parse( content=await page.content(), target_keys=missing_keys ) return new_specs

The Insight: This turns the messy web into a structured SQL database. This is applicable to sourcing chips from DigiKey, pumps from McMaster-Carr, or lumber from Home Depot.


Layer 2: The Constraint Compiler (Slang to Physics)

Users speak in intent (Brush busting, Cinematic, Long Range). Engineers speak in constraints (Stator Volume, Deadcat Geometry, Li-Ion Chemistry).

I built a prompt architecture that acts as a compiler. It forces the LLM to output a Parametric Constraint Object, not a shopping list.

# prompts.py - The Architect Persona REQUIREMENTS_SYSTEM_INSTRUCTION = """ You are the Chief Engineer. Translate user intent into PARAMETRIC CONSTRAINTS. INPUT: "I need a brush-busting drone for ranch work." KNOWLEDGE BASE: - "Brush Busting" implies: High Torque (Stator >= 2306), Impact Resistance (Arm Thickness >= 5mm). - "Ranch Work" implies: High Efficiency (6S Voltage), Penetration (Analog Video). OUTPUT SCHEMA: { "topology": { "class": "Heavy 5-inch", "voltage": "6S" }, "technical_constraints": { "min_arm_thickness_mm": 5.0, "motor_stator_index": "2306 or larger", "video_system": "Analog" } } """

The Insight: By decoupling Intent from Selection, we ensure the AI is looking for parts that meet engineering standards, not just parts that have drone in the title.


Layer 3: The Protocol Handshake (Deterministic Compatibility)

This is the moat. Most AI tools hallucinate compatibility. OpenForge enforces it with a Compatibility Service that runs purely deterministic code.

It checks voltage matching, geometric clearance, and electronic protocols (UARTs, BECs).

# app/services/compatibility_service.py def validate_build(bom): # 1. Voltage Check (Prevent Fire) # 6S Battery (22.2V) on High KV Motor = Explosion if battery.cells >= 6 and motor.kv > 2150: return {"valid": False, "error": "CRITICAL: Voltage Mismatch. Motor will burn."} # 2. Protocol Check (Prevent Logic Failure) # Does the Flight Controller have enough UART ports for the peripherals? required_uarts = 0 if "DJI" in vtx.name: required_uarts += 1 if "GPS" in bom: required_uarts += 1 if fc.uart_count < required_uarts: return {"valid": False, "error": "I/O Bottleneck: Not enough UARTs."} return {"valid": True}

The Insight: We treat hardware design like software compilation. If the types (voltage, mounting, protocols) don't match, the build fails before it costs money.


Beyond Drones: The Universal OpenForge Pattern

I used drones as the anchor for this project because they are complex systems involving mechanical, electrical, and software constraints. However, the architecture I built is domain-agnostic.

This is a Generalized Assembly Engine.

1. Custom PCB Design

  • Input: "I need an IoT sensor for temperature with WiFi."
  • Refinery: Scrapes component datasheets from Mouser/LCSC.
  • Constraints: Logic Level (3.3V vs 5V), Footprint (0402 vs 0603), Power Consumption.
  • Validation: ERC (Electrical Rule Check) agent ensures pin compatibility.

2. Industrial Piping & HVAC

  • Input: "Cooling system for a 500 sqft server room."
  • Refinery: Sources pumps and compressors from industrial catalogs.
  • Constraints: Flow rate, Pipe Diameter, Pressure Rating (PSI).
  • Validation: Hydraulic simulation ensures head pressure is sufficient.

3. Supply Chain Resilience

  • Input: "Find a substitute for this discontinued STM32 microcontroller."
  • Refinery: Scrapes global inventory.
  • Constraints: Pin-compatibility, Clock speed, Memory.
  • Validation: Checks if the new chip fits the existing PCB footprint logic.

Conclusion

The future of AI in engineering isn't about training a larger model that knows everything. It's about building Agentic Architectures that know how to:

  1. Find the truth (Active Reconnaissance).
  2. Check the truth (Deterministic Validation).
  3. Build the solution (Constraint Satisfaction).

OpenForge is a proof-of-concept for this future. We are moving from Computer-Aided Design (CAD) to Computer-Generated Engineering (CGE).

If you are interested in building systems that interface with the physical world reliably, take a look at the repo.

\

Market Opportunity
4 Logo
4 Price(4)
$0.01172
$0.01172$0.01172
-4.71%
USD
4 (4) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

The post Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference appeared on BitcoinEthereumNews.com. Key Takeaways Ethereum’s new roadmap was presented by Vitalik Buterin at the Japan Dev Conference. Short-term priorities include Layer 1 scaling and raising gas limits to enhance transaction throughput. Vitalik Buterin presented Ethereum’s development roadmap at the Japan Dev Conference today, outlining the blockchain platform’s priorities across multiple timeframes. The short-term goals focus on scaling solutions and increasing Layer 1 gas limits to improve transaction capacity. Mid-term objectives target enhanced cross-Layer 2 interoperability and faster network responsiveness to create a more seamless user experience across different scaling solutions. The long-term vision emphasizes building a secure, simple, quantum-resistant, and formally verified minimalist Ethereum network. This approach aims to future-proof the platform against emerging technological threats while maintaining its core functionality. The roadmap presentation comes as Ethereum continues to compete with other blockchain platforms for market share in the smart contract and decentralized application space. Source: https://cryptobriefing.com/ethereum-roadmap-scaling-interoperability-security-japan/
Share
BitcoinEthereumNews2025/09/18 00:25
Here’s How Consumers May Benefit From Lower Interest Rates

Here’s How Consumers May Benefit From Lower Interest Rates

The post Here’s How Consumers May Benefit From Lower Interest Rates appeared on BitcoinEthereumNews.com. Topline The Federal Reserve on Wednesday opted to ease interest rates for the first time in months, leading the way for potentially lower mortgage rates, bond yields and a likely boost to cryptocurrency over the coming weeks. Average long-term mortgage rates dropped to their lowest levels in months ahead of the central bank’s policy shift. Copyright{2018} The Associated Press. All rights reserved. Key Facts The central bank’s policymaking panel voted this week to lower interest rates, which have sat between 4.25% and 4.5% since December, to a new range of 4% and 4.25%. How Will Lower Interest Rates Impact Mortgage Rates? Mortgage rates tend to fall before and during a period of interest rate cuts: The average 30-year fixed-rate mortgage dropped to 6.35% from 6.5% last week, the lowest level since October 2024, mortgage buyer Freddie Mac reported. Borrowing costs on 15-year fixed-rate mortgages also dropped to 5.5% from 5.6% as they neared the year-ago rate of 5.27%. When the Federal Reserve lowered the funds rate to between 0% and 0.25% during the pandemic, 30-year mortgage rates hit record lows between 2.7% and 3% by the end of 2020, according to data published by Freddie Mac. Consumers who refinanced their mortgages in 2020 saved about $5.3 billion annually as rates dropped, according to the Consumer Financial Protection Bureau. Similarly, mortgage rates spiked around 7% as interest rates were hiked in 2022 and 2023, though mortgage rates appeared to react within weeks of the Fed opting to cut or raise rates. How Do Treasury Bonds Respond To Lower Interest Rates? Long-term Treasury yields are more directly influenced by interest rates, as lower rates tend to result in lower yields. When the Fed pushed rates to near zero during the pandemic, 10-year Treasury yields fell to an all-time low of 0.5%. As…
Share
BitcoinEthereumNews2025/09/18 05:59
The Giants Are Stumbling: Why BlockDAG’s 20-Exchange Launch is the Market’s New Safe Haven

The Giants Are Stumbling: Why BlockDAG’s 20-Exchange Launch is the Market’s New Safe Haven

The cryptocurrency market seems to have caught headwinds entering February. Portfolios across the globe are flashing red as the flash crash of February 2nd wreaks
Share
Captainaltcoin2026/02/04 02:30