Ethereum founder Vitalik Buterin recently launched Kohaku, a privacy and compliance solution, which is quite interesting. The key difference is that it differs from previous solutions like Tornado and Railgun, employing ZooKeeper and elliptic curve cryptography generation techniques. In simple terms, in the past, when Alice initiated an on-chain transfer to Bob's public address, everyone could see that Bob received the money. Now, Bob will generate a "one-time temporary address" to receive funds. Bob can legally use this money, but no one will know that the money belongs to Bob. Previous privacy solutions, such as Tornado, Railgun, and Aztec, used coin mixing or ZK solutions, where all the money was routed into a black box. Because the box had a large transaction capacity, the actual transfer path of the money was no longer visible. Kohaku's privacy solution involves Bob generating a Stealth Meta-Address master key. When receiving payments, a temporary, one-time receiving address is randomly generated (based on elliptic curve cryptography). Everyone can see that money has been received at this temporary address, but the address is invalidated after it is used up. Bob, who actually owns the master key, can control the money and claim it at some point in the future. To put it in a more abstract technical way: Bob's wallet permanently stores a master stealth key pair (public key + private key). When Alice transfers money to Bob, Alice/Bob's wallet generates a one-time temporary private key. Using Bob's public key and this temporary private key, an elliptic curve algorithm is performed to calculate a shared secret. This secret is then used to derive a completely new and entirely random one-time address. When Alice transfers money to this address, no one on the blockchain can tell it's related to Bob, but Bob can easily control the money using his master key and private key. above. It seems that only elliptic curve cryptography is needed, and it has nothing to do with ZK. However, if you use Kohaku technology to transfer money to a compliant institution, you may be required to attach a ZK proof to prove the source and true identity of the money, but at the same time you don't want to expose your privacy. This is where lightweight ZK verification comes in handy. Therefore, the combination of elliptic curve cryptography and ZooKeeper (ZK) technology has upgraded anonymity solutions into compliant privacy protection solutions. Consider the past: why were coin mixing pool solutions blocked? Because absolute "anonymity" provided opportunities for money laundering and other malicious activities. The combination of privacy addresses and ZK technology is the optimal solution to meet regulatory trends. Believe in somETHing!Ethereum founder Vitalik Buterin recently launched Kohaku, a privacy and compliance solution, which is quite interesting. The key difference is that it differs from previous solutions like Tornado and Railgun, employing ZooKeeper and elliptic curve cryptography generation techniques. In simple terms, in the past, when Alice initiated an on-chain transfer to Bob's public address, everyone could see that Bob received the money. Now, Bob will generate a "one-time temporary address" to receive funds. Bob can legally use this money, but no one will know that the money belongs to Bob. Previous privacy solutions, such as Tornado, Railgun, and Aztec, used coin mixing or ZK solutions, where all the money was routed into a black box. Because the box had a large transaction capacity, the actual transfer path of the money was no longer visible. Kohaku's privacy solution involves Bob generating a Stealth Meta-Address master key. When receiving payments, a temporary, one-time receiving address is randomly generated (based on elliptic curve cryptography). Everyone can see that money has been received at this temporary address, but the address is invalidated after it is used up. Bob, who actually owns the master key, can control the money and claim it at some point in the future. To put it in a more abstract technical way: Bob's wallet permanently stores a master stealth key pair (public key + private key). When Alice transfers money to Bob, Alice/Bob's wallet generates a one-time temporary private key. Using Bob's public key and this temporary private key, an elliptic curve algorithm is performed to calculate a shared secret. This secret is then used to derive a completely new and entirely random one-time address. When Alice transfers money to this address, no one on the blockchain can tell it's related to Bob, but Bob can easily control the money using his master key and private key. above. It seems that only elliptic curve cryptography is needed, and it has nothing to do with ZK. However, if you use Kohaku technology to transfer money to a compliant institution, you may be required to attach a ZK proof to prove the source and true identity of the money, but at the same time you don't want to expose your privacy. This is where lightweight ZK verification comes in handy. Therefore, the combination of elliptic curve cryptography and ZooKeeper (ZK) technology has upgraded anonymity solutions into compliant privacy protection solutions. Consider the past: why were coin mixing pool solutions blocked? Because absolute "anonymity" provided opportunities for money laundering and other malicious activities. The combination of privacy addresses and ZK technology is the optimal solution to meet regulatory trends. Believe in somETHing!

Analysis of Kohaku, the Regulatory-Friendly Privacy Solution Launched by Vitalik Buterin

2025/11/18 18:00

Ethereum founder Vitalik Buterin recently launched Kohaku, a privacy and compliance solution, which is quite interesting. The key difference is that it differs from previous solutions like Tornado and Railgun, employing ZooKeeper and elliptic curve cryptography generation techniques.

In simple terms, in the past, when Alice initiated an on-chain transfer to Bob's public address, everyone could see that Bob received the money. Now, Bob will generate a "one-time temporary address" to receive funds. Bob can legally use this money, but no one will know that the money belongs to Bob.

Previous privacy solutions, such as Tornado, Railgun, and Aztec, used coin mixing or ZK solutions, where all the money was routed into a black box. Because the box had a large transaction capacity, the actual transfer path of the money was no longer visible.

Kohaku's privacy solution involves Bob generating a Stealth Meta-Address master key. When receiving payments, a temporary, one-time receiving address is randomly generated (based on elliptic curve cryptography). Everyone can see that money has been received at this temporary address, but the address is invalidated after it is used up. Bob, who actually owns the master key, can control the money and claim it at some point in the future.

To put it in a more abstract technical way: Bob's wallet permanently stores a master stealth key pair (public key + private key). When Alice transfers money to Bob, Alice/Bob's wallet generates a one-time temporary private key. Using Bob's public key and this temporary private key, an elliptic curve algorithm is performed to calculate a shared secret. This secret is then used to derive a completely new and entirely random one-time address. When Alice transfers money to this address, no one on the blockchain can tell it's related to Bob, but Bob can easily control the money using his master key and private key.

above.

It seems that only elliptic curve cryptography is needed, and it has nothing to do with ZK. However, if you use Kohaku technology to transfer money to a compliant institution, you may be required to attach a ZK proof to prove the source and true identity of the money, but at the same time you don't want to expose your privacy. This is where lightweight ZK verification comes in handy.

Therefore, the combination of elliptic curve cryptography and ZooKeeper (ZK) technology has upgraded anonymity solutions into compliant privacy protection solutions. Consider the past: why were coin mixing pool solutions blocked? Because absolute "anonymity" provided opportunities for money laundering and other malicious activities. The combination of privacy addresses and ZK technology is the optimal solution to meet regulatory trends.

Believe in somETHing!

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Suspected $243M Crypto Hacker Arrested After Major Breakthrough in Global Heist

Suspected $243M Crypto Hacker Arrested After Major Breakthrough in Global Heist

Major breakthrough in $243M crypto heist as suspect arrested! $18.58M in crypto seized, linked to suspected hacker’s wallet. Dubai villa raid leads to possible arrest of crypto thief. A major breakthrough in the investigation into the $243 million crypto theft has emerged, as blockchain investigator ZachXBT claims that a British hacker, suspected of orchestrating one of the largest individual thefts in crypto history, may have been arrested. On December 5, ZachXBT revealed in a Telegram post that Danny (also known as Meech or Danish Zulfiqar Khan), the primary suspect behind the attack, was likely apprehended by law enforcement. ZachXBT pointed to a significant find: approximately $18.58 million worth of crypto currently sitting in an Ethereum wallet linked to the suspect. The investigator claimed that several addresses connected to Zulfiqar had consolidated funds to this address, mirroring patterns previously seen in law enforcement seizures. This discovery has raised suspicions that authorities may have closed in on the hacker. Moreover, ZachXBT mentioned that Zulfiqar was last known to be in Dubai, where it is alleged that a villa was raided, and multiple individuals associated with the hacker were arrested. He also noted that several contacts of Zulfiqar had gone silent in recent days, adding to the growing belief that law enforcement had made a major move against the hacker. However, no official statements from Dubai Police or UAE regulators have confirmed the arrest, and local media reports remain silent on the matter. Also Read: Song Chi-hyung: The Visionary Behind Upbit and the Future of Blockchain Innovation The $243 Million Genesis Creditor Heist: How the Attack Unfolded The arrest of Zulfiqar may be linked to one of the largest known individual crypto heists. In September 2024, ZachXBT uncovered that three attackers were involved in stealing 4,064 BTC (valued at $243 million at the time) from a Genesis creditor. The attack was carried out using sophisticated social engineering tactics. The hackers impersonated Google support to trick the victim into resetting two-factor authentication on their Gemini account, giving them access to the victim’s private keys. From there, they drained the wallet, moving the stolen BTC through a complex network of exchanges and swap services. ZachXBT previously identified the suspects by their online handles, “Greavys,” “Wiz,” and “Box,” later tying them to individuals Malone Lam, Veer Chetal, and Jeandiel Serrano. The U.S. Department of Justice later charged two of the suspects with orchestrating a $230 million crypto scam involving the theft. Further court documents revealed that the criminals had used a mix of SIM swaps, social engineering, and even physical burglaries to carry out the theft, spending millions on luxury items like cars and travel. ZachXBT’s tracking work has played a key role in uncovering several related thefts, including a $2 million scam in which Chetal was involved while out on bond. The news of Zulfiqar’s potential arrest could mark a significant turning point in the investigation, although full details are yet to emerge. Also Read: Kevin O’Leary Warns: Only Bitcoin and Ethereum Will Survive Crypto’s Reality Check! The post Suspected $243M Crypto Hacker Arrested After Major Breakthrough in Global Heist appeared first on 36Crypto.
Share
Coinstats2025/12/06 18:27