The post Bitcoin Knots Has Been Nothing More Than A Denial-of-Service Attack On Bitcoin appeared on BitcoinEthereumNews.com. In computing, a denial-of-service attack (DoS attack; UK: /dɒs/ doss US: /dɑːs/ daas[1]) is a cyberattack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to a network. -The Wikipedia definition of denial-of-service attack.  This is a very basic concept. Someone makes use of their own resources to disrupt the functioning of other machines on a network.  DoS attacks have been an issue for as long as the internet existed. One of the commonly argued “first Distributed Denial-of-service (DDoS) attacks” was against the Internet Service Provider (ISP) Panix in the mid-90s. There were of course many prior technical examples on older internet services, but this was one of, if not the, first major examples of such an attack on the modern World Wide Web.  This attack had numerous computers start to initiate a Transmission Control Protocol (TCP) connection with the ISPs servers, but never finishing the handshake protocol that finalized the connection. This consumes the server’s resources for managing network connections and prevents honest users from accessing the internet through the ISP’s servers.  Ever since this “initial” DDoS attack, they have been as common on the internet as storms are in nature, a regular occurrence that massive pieces of internet infrastructure have been built to defend against.  The Blockchain The blockchain is one of the core components of Bitcoin, and a required dependency for Bitcoin’s functionality as a distributed ledger. I am sure many people in this space would call so-called “spam” transactions a DoS attack on the Bitcoin blockchain. In order to call it that, you would have to define the “service” that the blockchain is offering as a system, and explain how spam transactions are denying that service to others… The post Bitcoin Knots Has Been Nothing More Than A Denial-of-Service Attack On Bitcoin appeared on BitcoinEthereumNews.com. In computing, a denial-of-service attack (DoS attack; UK: /dɒs/ doss US: /dɑːs/ daas[1]) is a cyberattack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to a network. -The Wikipedia definition of denial-of-service attack.  This is a very basic concept. Someone makes use of their own resources to disrupt the functioning of other machines on a network.  DoS attacks have been an issue for as long as the internet existed. One of the commonly argued “first Distributed Denial-of-service (DDoS) attacks” was against the Internet Service Provider (ISP) Panix in the mid-90s. There were of course many prior technical examples on older internet services, but this was one of, if not the, first major examples of such an attack on the modern World Wide Web.  This attack had numerous computers start to initiate a Transmission Control Protocol (TCP) connection with the ISPs servers, but never finishing the handshake protocol that finalized the connection. This consumes the server’s resources for managing network connections and prevents honest users from accessing the internet through the ISP’s servers.  Ever since this “initial” DDoS attack, they have been as common on the internet as storms are in nature, a regular occurrence that massive pieces of internet infrastructure have been built to defend against.  The Blockchain The blockchain is one of the core components of Bitcoin, and a required dependency for Bitcoin’s functionality as a distributed ledger. I am sure many people in this space would call so-called “spam” transactions a DoS attack on the Bitcoin blockchain. In order to call it that, you would have to define the “service” that the blockchain is offering as a system, and explain how spam transactions are denying that service to others…

Bitcoin Knots Has Been Nothing More Than A Denial-of-Service Attack On Bitcoin

2025/10/29 06:10

In computing, a denial-of-service attack (DoS attack; UK: /dɒs/ doss US: /dɑːs/ daas[1]) is a cyberattack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to a network. -The Wikipedia definition of denial-of-service attack. 

This is a very basic concept. Someone makes use of their own resources to disrupt the functioning of other machines on a network. 

DoS attacks have been an issue for as long as the internet existed. One of the commonly argued “first Distributed Denial-of-service (DDoS) attacks” was against the Internet Service Provider (ISP) Panix in the mid-90s. There were of course many prior technical examples on older internet services, but this was one of, if not the, first major examples of such an attack on the modern World Wide Web. 

This attack had numerous computers start to initiate a Transmission Control Protocol (TCP) connection with the ISPs servers, but never finishing the handshake protocol that finalized the connection. This consumes the server’s resources for managing network connections and prevents honest users from accessing the internet through the ISP’s servers. 

Ever since this “initial” DDoS attack, they have been as common on the internet as storms are in nature, a regular occurrence that massive pieces of internet infrastructure have been built to defend against. 

The Blockchain

The blockchain is one of the core components of Bitcoin, and a required dependency for Bitcoin’s functionality as a distributed ledger. I am sure many people in this space would call so-called “spam” transactions a DoS attack on the Bitcoin blockchain. In order to call it that, you would have to define the “service” that the blockchain is offering as a system, and explain how spam transactions are denying that service to others in a way not intended by the design of the system. 

I’d wager a bet that most people who believe spam is a DoS attack would say something like “the service the blockchain offers is processing financial transactions, and spam takes space away from people trying to do that.” The problem is, that is not specifically the service the blockchain offers. 

The service it actually offers is the confirmation of any consensus valid transaction through a real-time auction that periodically settles whenever a miner finds a block. If your transaction is consensus valid, and you have bid a high enough fee for a miner to include your transaction in a block, you are using the service the blockchain provides exactly as designed. 

This was a conscious design decision made over years during the “Block Size Wars” and finalized in the activation of Segregated Witness and the rejection of the Segwit2x blocksize increase through a hard fork pushed by major companies at the time.  The blockchain would function by prioritizing the highest bidding fee transactions, and users would be free to compete in that auction. This is how blockspace would be allocated, with a global restriction to protect verifiability and a free market pricing mechanism. 

Nothing about a transaction some arbitrarily define as “spam” winning in this open auction is a DoS of the blockchain. It is a user making use of that resource in the way they are supposed to, participating in the auction with everyone else. 

The Relay Network

Many, if not most, Bitcoin nodes offer transaction relay as a service to the rest of the network. If you broadcast your transactions to your peers on the network, they will forward them on to their peers, and so on. Because the peering logic deciding which nodes to peer with maintains wide connectivity, this service allows transactions to propagate across the network very quickly, and specifically allows them to propagate to all mining nodes. 

Another service is block relay, propagating valid blocks as they are found in the same manner. This has been highly optimized over the years, to the point where most of the time an entire block is never actually relayed, just a shorthand “sketch” of the blockheader and the transactions included in it so you can reconstruct them from your own mempool. In other words, optimizations in block relay depend on a transaction relay functioning properly and propagating all valid and likely to be mined transactions. 

When nodes do not have transactions in a block already in their mempool, they must request them from neighboring nodes, taking more time to validate the block in the process. They also explicitly forward those transactions along with the block sketch to other peers in case they are missing them, wasting bandwidth. The more nodes filtering transactions they classify as spam, the longer it takes blocks including those filtered transactions to propagate across the network. 

Transaction filtering actively seeks to disrupt both of these services, in the case of transaction relay failing miserably to prevent them from propagating to miners, and in the case of block propagation having a marginal but noticeable performance degradation the more nodes on the network are filtering transactions. 

These node policies have the explicit purpose of degrading the network service of propagating transactions to miners and the rest of the network, and view the degradation of block propagation as a penalty to miners who choose to include valid transactions they are filtering. They seek to create a degradation of service as a goal, and view the degradation of another service resulting from that attempt as a positive. 

This actually is a DoS attack, in that it actually is degrading a network service contrary to the design of the system. 

Where From Here?

The entire saga of Knotz vs. Core, or “Spammers” vs. “Filterers”, has been nothing more than a miserably ineffective and failed DoS attack on the Bitcoin network. Filters do absolutely nothing to prevent filtered transactions from being included in blocks. The goal of disrupting transaction propagation to miners has had no success whatsoever, and the degradation of block relay has been marginal enough to not be a disincentive to miners. 

I see this as a huge demonstration of Bitcoin’s robustness and resilience against attempted censorship and disruption on the level of the Bitcoin Network itself. 

So now what?

A BIP by an anonymous author has been put forward to enact a temporary softfork that would expire after roughly a year making numerous ways to include “spam” in Bitcoin transactions consensus invalid through that time period. After realizing the DoS attack on the peer-to-peer network has been a total failure, filter supporters have moved to consensus changes, as many of them were told would be necessary over two years ago. 

Will this actually solve the problem? No, it won’t. It will simply force people who wish to submit “spam” to this forked network, if they actually follow through on implementing it, to use fake ScriptPubKeys to encode their data in unspendable outputs that will bloat the UTXO set. 

So even if this fork was met with resounding support, activated successfully, and did not result in a chainsplit, it would still not achieve the stated goal and leave “spammers” no option but to “spam” in the most damaging way to the network possible.

Source: https://bitcoinmagazine.com/technical/bitcoin-knots-has-been-nothing-more-than-a-denial-of-service-attack-on-bitcoin

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Japan-Based Bitcoin Treasury Company Metaplanet Completes $1.4 Billion IPO! Will It Buy Bitcoin? Here Are the Details

Japan-Based Bitcoin Treasury Company Metaplanet Completes $1.4 Billion IPO! Will It Buy Bitcoin? Here Are the Details

The post Japan-Based Bitcoin Treasury Company Metaplanet Completes $1.4 Billion IPO! Will It Buy Bitcoin? Here Are the Details appeared on BitcoinEthereumNews.com. Japan-based Bitcoin treasury company Metaplanet announced today that it has successfully completed its public offering process. Metaplanet Grows Bitcoin Treasury with $1.4 Billion IPO The company’s CEO, Simon Gerovich, stated in a post on the X platform that a large number of institutional investors participated in the process. Among the investors, mutual funds, sovereign wealth funds, and hedge funds were notable. According to Gerovich, approximately 100 institutional investors participated in roadshows held prior to the IPO. Ultimately, over 70 investors participated in Metaplanet’s capital raising. Previously disclosed information indicated that the company had raised approximately $1.4 billion through the IPO. This funding will accelerate Metaplanet’s growth plans and, in particular, allow the company to increase its balance sheet Bitcoin holdings. Gerovich emphasized that this step will propel Metaplanet to its next stage of development and strengthen the company’s global Bitcoin strategy. Metaplanet has recently become one of the leading companies in Japan in promoting digital asset adoption. The company has previously stated that it views Bitcoin as a long-term store of value. This large-scale IPO is considered a significant step in not only strengthening Metaplanet’s capital but also consolidating Japan’s role in the global crypto finance market. *This is not investment advice. Follow our Telegram and Twitter account now for exclusive news, analytics and on-chain data! Source: https://en.bitcoinsistemi.com/japan-based-bitcoin-treasury-company-metaplanet-completes-1-4-billion-ipo-will-it-buy-bitcoin-here-are-the-details/
Share
BitcoinEthereumNews2025/09/18 08:42
Single Currency-Pegged Tokens Surge Following MiCA Rollout.

Single Currency-Pegged Tokens Surge Following MiCA Rollout.

The post Single Currency-Pegged Tokens Surge Following MiCA Rollout. appeared on BitcoinEthereumNews.com. The euro stablecoin market has rebounded in the year since the European Union’s (EU) Markets in Crypto-Assets Regulation (MiCA) came into force, with market capitalization doubling after regulations governing the tokens rolled out in June 2024, according to a new report. The “Euro Stablecoin Trends Report 2025” from London-based payments processing company Decta points a potential shift for the tokens, whose value is pegged to the single European currency and which have historically struggled to gain traction against their U.S. dollar-pegged counterparts. The swing contrasts with the 48% contraction experienced the year before, according to the report. It also contrasts with a 26% advance in total stablecoin market cap. Euro coin market cap climbed to some $500 million by May 2025, the report said, mainly due to improved issuer obligations and standardized reserve requirements. It’s now $680 million, according to data tracked by CoinGecko. Even so, that’s just a tiny fraction of the $300 billion held in U.S. dollar-pegged tokens, a market dominated by Tether’s USDT with Circle Internet’s (CRCL) USDC in second place. Growth has been especially concentrated among a few standout tokens. EURS, issued by Malta-based Stasis, posted the most dramatic gains, soaring 644% million to $283.9 million by October 2025. Circle Internet’s EURC and EURCV, from Societe Generale’s SG-Forge, also recorded significant gains. Transaction activity surged in parallel. Monthly euro-stablecoin volume rose nearly ninefold after MiCA’s implementation US$3.83 billion. EURC and EURCV were among the biggest beneficiaries, with volume expanding 1,139% and 343% respectively, driven by increased usage in payments, fiat on-ramps and digital-asset trading. Consumer awareness also appears to be climbing. Decta found substantial spikes in search activity across the EU, including 400% growth in Finland and 313.3% in Italy, with smaller but steady increases in markets such as Cyprus and Slovakia. Source: https://www.coindesk.com/business/2025/12/06/hold-euro-stablecoin-market-cap-doubles-in-year-after-mica-decta-says
Share
BitcoinEthereumNews2025/12/06 21:25