Many A/B testing problems come from using statistical methods without checking if they fit the situation. The three most common mistakes are: (1) using the MannMany A/B testing problems come from using statistical methods without checking if they fit the situation. The three most common mistakes are: (1) using the Mann

Three A/B Testing Mistakes I Keep Seeing (And How to Avoid Them)

Over the past few years, I have observed many common errors people make when designing A/B tests and performing post-analysis. In this article, I want to highlight three of these mistakes and explain how they can be avoided.

Using Mann–Whitney to compare medians

The first mistake is the incorrect use of the Mann–Whitney test. This method is widely misunderstood and frequently misused, as many people treat it as a non-parametric “t-test” for medians. In fact, the Mann–Whitney test is designed to determine whether there is a shift between two distributions.

\

When applying the Mann–Whitney test, the hypotheses are defined as follows:

\ We must always consider the assumptions of the test. There are only two:

  • Observations are i.i.d.
  • The distributions have the same shape

\ How to compute the Mann–Whitney statistic:

  1. Sort all observations by magnitude.
  2. Assign ranks to all observations.
  3. Compute the U statistics for both samples.

\

  1. Choose the minimum from these two values
  2. Use statistical tables for the Mann-Whitney U test to find the probability of observing this value of U or lower.

**Since we now know that this test should not be used to compare medians, what should we use instead?

\ Fortunately, in 1945 the statistician Frank Wilcoxon introduced the signed-rank test, now known as the Wilcoxon Signed Rank Test.

The hypotheses for this test match what we originally expected:

How to calculate the Wilcoxon Signed Rank test statistic:

  1. For each paired observation, calculate the difference, keeping both its absolute value and sign.

  2. Sort the absolute differences from smallest to largest and assign ranks.

  3. Compute the test statistic:

    \

  4. The statistic W follows a known distribution. When n is larger than roughly 20, it is approximately normally distributed. This allows us to compute the probability of observing W under the null hypothesis and determine statistical significance.

    \ Some intuition behind the formula:

Using bootstrapping everywhere and for every dataset

The second mistake is applying bootstrapping all the time. I’ve often seen people bootstrap every dataset without first verifying whether bootstrapping is appropriate in that context.

The key assumption behind bootstrapping is

==The sample must be representative of the population from which it was drawn.==

If the sample is biased and poorly represents the population, the bootstrapped statistics will also be biased. That’s why it’s crucial to examine proportions across different cohorts and segments.

For example, if your sample contains only women, while your overall customer base has an equal gender split, bootstrapping is not appropriate.

Always using default Type I and Type II error values

Last but not least is the habit of blindly using default experiment parameters. In about 95% of cases, 99% of analysts and data scientists at 95% of companies stick with defaults: a 5% Type I error rate and a 20% Type II error rate (or 80% test power).

\ Let’s start with why don’t we just set both Type I and Type II error rates to 0%?

==Because doing so would require an infinite sample size, meaning the experiment would never end.==

Clearly, that’s not practical. We must strike a balance between the number of samples we can collect and acceptable error rates.

I encourage people to consider all relevant product constraints.

The most convenient way to do it , create the table ,that you see below, and discuss it with product managers and people who are responsible for the product.

\

For a company like Netflix, even a 1% MDE can translate into substantial profit. For a small startup, that’s not true. Google, on the other hand, can easily run experiments involving tens of millions of users, making it reasonable to set the Type I error rate as low as 0.1% to gain higher confidence in the results.

\


Our path to excellence is paved with mistakes. Let’s make them!

Market Opportunity
B Logo
B Price(B)
$0.19068
$0.19068$0.19068
-1.60%
USD
B (B) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

BitGo expands its presence in Europe

BitGo expands its presence in Europe

The post BitGo expands its presence in Europe appeared on BitcoinEthereumNews.com. BitGo, global leader in digital asset infrastructure, announces a significant expansion of its presence in Europe. The company, through its subsidiary BitGo Europe GmbH, has obtained an extension of the license from BaFin (German Federal Financial Supervisory Authority), allowing it to offer regulated cryptocurrency trading services directly from Frankfurt, Germany. This move marks a decisive step for the European digital asset market, offering institutional investors the opportunity to access secure, regulated cryptocurrency trading integrated with advanced custody and management services. A comprehensive offering for European institutional investors With the extension of the license according to the MiCA (Markets in Crypto-Assets) regulation, initially obtained in May 2025, BitGo Europe expands the range of services available for European investors. Now, in addition to custody, staking, and transfer of digital assets, the platform also offers a spot trading service on thousands of cryptocurrencies and stablecoins. Institutional investors can now leverage BitGo’s OTC desk and a high-performance electronic trading platform, designed to ensure fast, secure, and transparent transactions. Aggregated access to numerous liquidity sources, including leading market makers and exchanges, allows for trading at competitive prices and high-quality executions. Security and Regulation at the Core of BitGo’s Strategy According to Brett Reeves, Head of European Sales and Go Network at BitGo, the goal is clear: “We are excited to strengthen our European platform and enable our clients to operate smoothly, competitively, and securely.§By combining our institutional custody solution with high-performance trading execution, clients will be able to access deep liquidity with the peace of mind that their assets will remain in cold storage, under regulated custody and compliant with MiCA.” The security of digital assets is indeed one of the cornerstones of BitGo’s offering. All services are designed to ensure that investors’ assets remain protected in regulated cold storage, minimizing operational and counterparty risks.…
Share
BitcoinEthereumNews2025/09/18 04:28
LayerZero Foundation initiates buyback of 50 million ZRO from early backers

LayerZero Foundation initiates buyback of 50 million ZRO from early backers

The post LayerZero Foundation initiates buyback of 50 million ZRO from early backers appeared on BitcoinEthereumNews.com. Key Takeaways LayerZero Foundation has initiated a buyback for 50 million ZRO tokens. The buyback targets early investors who supported LayerZero during its early development stages. LayerZero Foundation, the non-profit entity overseeing the development of the LayerZero blockchain interoperability protocol, today initiated a buyback of 50 million ZRO tokens from early backers. The buyback targets tokens held by initial investors who provided funding during the project’s early development phases. Token buybacks in crypto are typically used to reduce circulating supply and signal long-term confidence in the protocol. ZRO launched in June 2024 with an initial fully diluted valuation of around $3.0 billion. The foundation distributed 8.5% of the token supply through an airdrop on launch day to bootstrap community participation. LayerZero’s protocol connects over 50 blockchains and has facilitated more than 100 million cross-chain messages since launch, enhancing liquidity across decentralized applications. Source: https://cryptobriefing.com/layerzero-zro-token-buyback-early-backers-2025/
Share
BitcoinEthereumNews2025/09/23 10:36
Top political stories of 2025: The Villar family’s business and political setbacks

Top political stories of 2025: The Villar family’s business and political setbacks

Rappler's Dwight de Leon recaps the challenges faced in 2025 by one of the Philippines' wealthiest families
Share
Rappler2025/12/25 09:00