The present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium  BUSAN, South Korea, Dec. 23, 2025 /PRNewswireThe present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium  BUSAN, South Korea, Dec. 23, 2025 /PRNewswire

Pusan National University Researchers Discover Faster, Smarter Heat Treatment for Lightweight Magnesium Metals

The present research utilizes a T-type specimen to uncover how electric pulses turbocharge grain growth in magnesium 

BUSAN, South Korea, Dec. 23, 2025 /PRNewswire/ — Electropulsing treatment (EPT) is a state-of-the-art technology for rapidly heating metallic materials. The highly energy-efficient and eco-sufficient process utilizes a pulsed current or ‘electropulse,’ achieving unique effects such as electroplasticity and electropulsing anisotropy. It facilitates fast microstructural evolution in alloys—compared to the conventional furnace heat treatment (FHT) technique—possibly via athermal contributions that go beyond the effects of Joule heating.

Recent efforts by scientists to determine these athermal contributions have focused on direct comparisons between EPT and FHT at the same temperatures. However, such approaches are expected to suffer from significant experimental errors.

In a new study, a team of researchers from Korea, led by Professor Taekyung Lee, a faculty at the School of Mechanical Engineering at Pusan National University and the head of the Metal Design & Mechanics (MEDEM) Lab, has utilized a special “T-shaped” magnesium sample that facilitates the separation of the normal heating effects from the extra, athermal effects of EPT. Their findings were made available online and have been recently published in the Journal of Magnesium and Alloys on 08 December 2025.

Prof. Lee highlights the novelty of their work, “Our innovative T-type specimen methodology separates the current and heat transfer paths within a single specimen subjected to EPT. This pioneering methodology is contrasted by the conventional method that compared two different specimens: one with EPT and the other with FHT at a similar temperature. This traditional methodology possesses lots of inherent limitations. On the other hand, the T-type specimen methodology allows for the independent analysis of thermal and athermal effects of EPT within a single specimen.”

By carefully controlling the electric current in a pre-twinned AZ31 magnesium alloy sample, the team created two regions in the same sample that reached almost the same temperature, but only one region actually carried current. They found that the region carrying current showed enhanced strain-induced boundary migration mechanism, much faster grain growth, twin boundary removal, low-angle grain boundary reduction, dislocation annihilation, and softening than the region heated only by conduction. This proves that EPT can accelerate microstructural changes beyond what can be explained by heat alone.

The researchers verified their results using finite element analysis, which confirmed electric current flow confinement to a single beam and reliably reproduced the curved thermal distribution observed at the beam intersection in the T-type specimen.

Prof. Lee sheds light on the long-term implications of their innovative technology, “Measuring the athermal effect without Joule heat, or thermal effect, in the EPT process has long been a major challenge in academia. The developed methodology can help researchers understand the physical principles governing EPT. It is, therefore, expected to become a core standard measuring technology for advancing high-efficiency and eco-friendly forming techniques—known as electrically-assisted forming—for various metallic materials using electropulses.”

Overall, the T-type specimen approach presented in this study offers a robust framework for separating the thermal and athermal effects of EPT at the macroscale, thus providing an indispensable tool for elaborating their respective roles in EPT-driven microstructures and mechanical properties.

Reference
Title of original paper: Validating the athermal contribution of electropulsing treatment utilizing T-type Mg specimen
Journal: Journal of Magnesium and Alloys
DOI: 10.1016/j.jma.2025.11.017

About Pusan National University
Website: https://www.pusan.ac.kr/eng/Main.do 

Media Contact:
Goon-Soo Kim
82 51 510 7928
[email protected]

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/pusan-national-university-researchers-discover-faster-smarter-heat-treatment-for-lightweight-magnesium-metals-302648151.html

SOURCE Pusan National University

Market Opportunity
Archer Hunter Logo
Archer Hunter Price(FASTER)
$0.0000593
$0.0000593$0.0000593
-2.46%
USD
Archer Hunter (FASTER) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

XMR Technical Analysis Jan 22

XMR Technical Analysis Jan 22

The post XMR Technical Analysis Jan 22 appeared on BitcoinEthereumNews.com. XMR, despite the general downtrend, holding above short-term EMA20 at the $514.37 level
Share
BitcoinEthereumNews2026/01/22 14:13
‘Groundbreaking’: Barry Silbert Reacts to Approval of ETF with XRP Exposure

‘Groundbreaking’: Barry Silbert Reacts to Approval of ETF with XRP Exposure

The post ‘Groundbreaking’: Barry Silbert Reacts to Approval of ETF with XRP Exposure appeared on BitcoinEthereumNews.com. A “combo” ETF  Crypto ETF trailblazer  Digital Currency Group founder Barry Silbert has reacted to the approval of the Grayscale Digital Large Cap Fund  (GDLC), the very first multi-crypto exchange-traded fund (ETF), describing it as “groundbreaking.”  “Grayscale continues to be the first mover, driving new product innovations that bridge tradfi and digital assets,” Silbert said while commenting on the news.  Peter Mintzberg, chief executive officer at Graysacle, claims that the team behind the world’s leading cryptocurrency asset manager is working “expeditiously” in order to bring the product to the market.  A “combo” ETF  The ETF in question offers exposure to Bitcoin (BTC), Ethereum (ETH), as well as several other major altcoins, including the Ripple-linked XRP token, Solana (SOL), and Cardano (ADA). XRP, for instance, has a 5.2% share of the fund, making it the third-largest constituent.  The fund initially debuted as a private placement for accredited investors back in early 2018, and its shares later became available on over-the-counter (OTC) markets.  In early July, the SEC approved the conversion of GDLC into an ETF, but it was then abruptly halted for a “review” shortly after this.  As of Sept. 17, the fund currently has a total of $915.6 million in assets.  Crypto ETF trailblazer  It is worth noting that Grayscale is usually credited with kickstarting the cryptocurrency ETF craze by winning its court case against the SEC.  The SEC ended up approving Bitcoin ETFs in early 2024 and then followed up with Ethereum ETFs.  Grayscale’s flagship GBTC currently boasts more than $20.5 billion in net assets, according to data provided by SoSoValue.  Source: https://u.today/groundbreaking-barry-silbert-reacts-to-approval-of-etf-with-xrp-exposure
Share
BitcoinEthereumNews2025/09/19 03:39
‘If you want to be great, make enemies’: Solana economist Max Resnick

‘If you want to be great, make enemies’: Solana economist Max Resnick

The post ‘If you want to be great, make enemies’: Solana economist Max Resnick  appeared on BitcoinEthereumNews.com. Max Resnick, the Consensys researcher who publicly
Share
BitcoinEthereumNews2026/01/22 14:12