This work moves beyond closed-set segmentation (Mask2Former) to open-set detection using SAM and Grounding DINO.This work moves beyond closed-set segmentation (Mask2Former) to open-set detection using SAM and Grounding DINO.

Foundation Models for 3D Scenes: DINOv2 vs. CLIP for Instance Differentiation

2025/12/11 02:00

Abstract and 1 Introduction

  1. Related Works

    2.1. Vision-and-Language Navigation

    2.2. Semantic Scene Understanding and Instance Segmentation

    2.3. 3D Scene Reconstruction

  2. Methodology

    3.1. Data Collection

    3.2. Open-set Semantic Information from Images

    3.3. Creating the Open-set 3D Representation

    3.4. Language-Guided Navigation

  3. Experiments

    4.1. Quantitative Evaluation

    4.2. Qualitative Results

  4. Conclusion and Future Work, Disclosure statement, and References

2.2. Semantic Scene Understanding and Instance Segmentation

f 3D scenes. This domain has been thoroughly explored using closed-set vocabulary methods, including our prior work [1], which utilizes Mask2Former [7] for image segmentation. Various studies [18, 19, 20] have adopted a similar approach to achieve object segmentation, resulting in a closed-set framework. While these methods are effective, they are constrained by the limitation of predefined object categories. Our approach employs SAM [21] to acquire segmentation masks for open-set detection. Moreover, our methodology, distinct from many existing techniques that depend heavily on extensive pre-training or fine-tuning, integrates these models to forge a more comprehensive and adaptable 3D scene representation. This emphasizes enhanced semantic understanding and spatial awareness.

\ To improve the semantic understanding of the objects detected within our images, we harness detailed feature representations using two foundational models: CLIP [9] and DINOv2 [10]. DINOv2, a Vision Transformer trained through self-supervision, recognises pixel-level correspondences between images and captures spatial hierarchies. Compared to CLIP, DINOv2 more effectively distinguishes between two distinct instances of the same object type, which poses challenges for CLIP.

\ It’s crucial to differentiate individual instances following the semantic identification of objects. Early methods employed a Region Proposal Network (RPN) to predict bounding boxes for these instances [22]. Alternatively, some strategies suggest a generalized architecture for managing panoptic segmentation [23]. In our preceding approach, we utilized the segmentation model Mask2Former [7], which employs an attention mechanism to isolate object-centric features. Recent research also tackles semantic scene understanding using open vocabularies [24], utilizing multi-view fusion and 3D convolutions to derive dense features from an open-vocabulary embedding space for precise semantic segmentation. Our current pipeline leverages Grounding DINO [25] to generate bounding boxes, which are then input into the Segment Anything Model (SAM) [21] to produce individual object masks, thus enabling instance segmentation within the scene.

\

:::info Authors:

(1) Laksh Nanwani, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(2) Kumaraditya Gupta, International Institute of Information Technology, Hyderabad, India;

(3) Aditya Mathur, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work.

(4) Swayam Agrawal, International Institute of Information Technology, Hyderabad, India;

(5) A.H. Abdul Hafez, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey;

(6) K. Madhava Krishna, International Institute of Information Technology, Hyderabad, India.

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Pound Sterling softens as traders eye BoE rate cut next week

Pound Sterling softens as traders eye BoE rate cut next week

The post Pound Sterling softens as traders eye BoE rate cut next week appeared on BitcoinEthereumNews.com. The GBP/USD pair trades in negative territory near 1.3365 during the early European trading hours on Thursday, pressured by the rebound in the US Dollar (USD). Nonetheless, the potential downside might be limited after the US Federal Reserve (Fed) delivered a rate cut at its December policy meeting. Traders brace for the US weekly Initial Jobless Claims report, which will be published later on Thursday.  Markets continue to digest the largely anticipated rate cut by the Fed on Wednesday. The US central bank reduced its key interest rate for the third time in a row at its December meeting but signaled that it may leave rates unchanged in the coming months. Two Fed officials voted to keep the rate unchanged, while Stephen Miran, whom Trump appointed in September, voted for a larger rate cut. During the press conference, Fed Chair Jerome Powell said central bankers need time to see how the three reductions this year work their way through the US economy. Powell added that he will closely examine incoming data leading up to the next meeting in January. The Fed’s economic projections suggested one rate cut will take place next year, although new data could change this. On the other hand, the prospect of the Bank of England (BoE) rate reductions could drag the Pound Sterling (GBP) lower against the Greenback. Financial markets are now pricing in nearly an 88% chance of the BoE rate cut next week after signs from economic data that inflation pressure has eased.  Pound Sterling FAQs The Pound Sterling (GBP) is the oldest currency in the world (886 AD) and the official currency of the United Kingdom. It is the fourth most traded unit for foreign exchange (FX) in the world, accounting for 12% of all transactions, averaging $630 billion a day, according to 2022…
Share
BitcoinEthereumNews2025/12/11 13:40