In the report "State of AI 2025," Messari dedicates an entire chapter to Decentralized AI (deAI), defining it as a necessary complement.In the report "State of AI 2025," Messari dedicates an entire chapter to Decentralized AI (deAI), defining it as a necessary complement.

Decentralized AI: what it is, how it works, and why it will be central to the intelligence economy

2025/12/03 17:47
decentralized ai deai

In the report “State of AI 2025”, Messari dedicates an entire chapter to Decentralized AI (deAI), defining it not as an ideological alternative to traditional AI, but as a necessary complement to ensure transparency, security, and global participation.

In a world where models become black boxes and the power of private labs grows, the role of deAI is not theoretical: it is a structural response to the challenges of the new order of intelligence.

Artificial intelligence is becoming the most strategic digital infrastructure on the planet. However, as tech giants consolidate their dominance, a parallel movement is emerging that aims to build a radically different AI: open, verifiable, permissionless, and distributed.

What is Decentralized AI (deAI)?

The deAI is an AI system built on distributed networks, where:

  • data can be collected, labeled, and exchanged in a permissionless manner;
  • the computation is performed on global networks of independent GPUs;
  • the models can be trained and used in a coordinated manner, without a single controlling authority;
  • privacy, verifiability, and reputation are ensured through blockchain, cryptography, and attestation systems;
  • AI agents can transact, identify themselves, and collaborate in a trustless environment.

In other words:

DeAI is the infrastructure that enables the creation of an open AI “for anyone and by anyone,” without having to rely on a private giant.

Why does deAI become necessary?

Messari divides the reasons into two categories: philosophical and practical.

🔹 Philosophy

  1. Concentration of Power
    Centralized AI grants enormous control to a few companies (OpenAI, Google, Anthropic). This influences narratives, data access, technological standards, and even social processes.
  2. Opacity
    We do not know how the models were trained, what data they use, or what biases they incorporate.
  3. Limited trust
    There are no verifiable guarantees that the model provided is as claimed or that it processes data correctly.

🔹 Practice

  1. Global Coordination
    Blockchains enable the coordination of millions of devices and contributors without the need for trust.
  2. On-chain Verifiability
    Identity, reputation, model status, and integrity can be recorded immutably.
  3. Native Payments
    AI agents require instant payments, microtransactions, and immediate settlement: here, crypto is indispensable.
  4. Scalability through distributed networks
    deAI leverages existing hardware (gaming PCs, edge devices, small data centers), not just hyperscaler GPUs.

The deAI Stack: The 6 Layers Comprising the Ecosystem

The report details the technological stack of deAI, consisting of 6 interconnected layers: Data → Compute → Training → Privacy/Verification → Agents → Applications.

Let’s examine them one by one.

1. Data Layer

The heart of every AI system is the dataset.
In deAI, data is collected, labeled, stored, and exchanged through distributed networks.

Main activities:

  • data collection (video, audio, sensors, real interactions)
  • labeling through incentivized marketplaces
  • cleaning & preprocessing
  • storage on distributed networks (Filecoin, Arweave, Jackal)
  • data marketplaces (Ocean, Vana, Cudis)

Decentralization allows:

  • greater data diversity
  • direct financial incentives to contributors
  • verifiability (provenance, timestamp, identity)
  • reduction in the cost of proprietary datasets

With the “data famine” anticipated by 2030, this layer becomes crucial.

2. Compute Layer

This is where the most expensive part of AI takes place: performing training and inference.

Decentralized Compute Networks (DCN):

  • Akash
  • Render
  • io.net
  • Aethir
  • Hyperbolic
  • EigenCloud
  • Exabits

The main advantage: they make on-demand compute available at market prices, not dictated by a cloud provider.

Historically ineffective for large-scale training (due to latencies and synchronizations), today DCNs are perfect for serving inference, because:

  • requires less communication between GPUs
  • can be executed on heterogeneous hardware
  • is the segment expected to represent 50–75% of the compute demand by 2030

3. Training & Inference Layer

Messari makes a clear distinction:

Pre-training

Extremely difficult to decentralize:
requires enormous datasets, tight synchronization, and extremely high bandwidth.

Post-training (SFT / RLHF / RL)

Perfect for distributed networks:

  • more asynchrony
  • less communication
  • more scalability
  • possibility of data crowdsourcing

Decentralized Inference

It is the missing link that makes deAI usable in real life.

Examples cited in the report:

  • Prodia
  • Declines
  • Fortytwo Network
  • dria
  • inference.net

4. Privacy & Verification Layer

This is where the most complex cryptographic technologies come into play.

Fundamental Techniques:

  • ZKML (zero-knowledge machine learning)
  • Optimistic ML (verification through challenge period)
  • TEE-based ML (trusted execution environments)
  • FHE (fully homomorphic encryption)
  • MPC (multi-party computation)
  • Federated learning

Objective:

Ensure that a model has been calculated correctly, without modifications and without exposing sensitive data.

Mentioned projects:

  • Phala (TEE)
  • Zama (FHE)
  • Nillion (MPC)
  • EZKL (ZKML)
  • Lagrange (zkML + verification infra)

This is the most important layer for enterprise adoption.

5. Agents & Orchestration Layer

The report analyzes how autonomous agents are becoming the new “interface” of AI.

A full stack includes:

  • base model (LLM or SLM)
  • tooling (API, wallet, browser automation)
  • framework (ElizaOS, Daydreams, Olas, Questflow)
  • communication standards
  • multi-agent coordination
  • verifiable integrity (tamper-proof prompt, verified reasoning)

Blockchains unlock for agents:

  • identity
  • reputation
  • self-custodial payments
  • trustless access to financial services
  • auditability

Agents will be the primary “users” of blockchain in the next 5 years.

6. Applications Layer

The final level: apps built on the entire stack.

Examples:

  • trading agents
  • autonomous DeFi bots
  • autonomous browsers
  • cybersecurity systems
  • AI-powered data labeling
  • multi-agent universes for gaming, discovery, or e-commerce
  • decentralized recommendation engines

deAI apps function like regular AI, but with three differences:

  1. transparency
  2. verifiability
  3. interoperability with crypto

Why Now? The 5 Forces Driving deAI

Messari identifies five megatrends that create a perfect environment for the growth of decentralized AI:

  1. Inference Demand in Vertical Boom
  2. Depletion of Public Data and Demand for Proprietary Data
  3. Explosion of AI agents that must transact autonomously
  4. Global War for Talent and Prohibitive Compute Costs
  5. Advancements in the Decentralization of Training and Verification

Centralized AI cannot meet all needs: complementarity is required.

Conclusion: deAI is the Foundation of Open, Verifiable, and Participatory AI

Decentralized AI is not a trend: it is a structural response.
As models grow and the power of Big Tech concentrates, the need to:

  • verify
  • decentralize
  • certify
  • coordinate
  • offset
  • protect
  • distribute

becomes central.

DeAI is the infrastructure that enables AI to be not only powerful, but also:

  • open
  • secure
  • distributed
  • globally accessible
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

BlackRock boosts AI and US equity exposure in $185 billion models

BlackRock boosts AI and US equity exposure in $185 billion models

The post BlackRock boosts AI and US equity exposure in $185 billion models appeared on BitcoinEthereumNews.com. BlackRock is steering $185 billion worth of model portfolios deeper into US stocks and artificial intelligence. The decision came this week as the asset manager adjusted its entire model suite, increasing its equity allocation and dumping exposure to international developed markets. The firm now sits 2% overweight on stocks, after money moved between several of its biggest exchange-traded funds. This wasn’t a slow shuffle. Billions flowed across multiple ETFs on Tuesday as BlackRock executed the realignment. The iShares S&P 100 ETF (OEF) alone brought in $3.4 billion, the largest single-day haul in its history. The iShares Core S&P 500 ETF (IVV) collected $2.3 billion, while the iShares US Equity Factor Rotation Active ETF (DYNF) added nearly $2 billion. The rebalancing triggered swift inflows and outflows that realigned investor exposure on the back of performance data and macroeconomic outlooks. BlackRock raises equities on strong US earnings The model updates come as BlackRock backs the rally in American stocks, fueled by strong earnings and optimism around rate cuts. In an investment letter obtained by Bloomberg, the firm said US companies have delivered 11% earnings growth since the third quarter of 2024. Meanwhile, earnings across other developed markets barely touched 2%. That gap helped push the decision to drop international holdings in favor of American ones. Michael Gates, lead portfolio manager for BlackRock’s Target Allocation ETF model portfolio suite, said the US market is the only one showing consistency in sales growth, profit delivery, and revisions in analyst forecasts. “The US equity market continues to stand alone in terms of earnings delivery, sales growth and sustainable trends in analyst estimates and revisions,” Michael wrote. He added that non-US developed markets lagged far behind, especially when it came to sales. This week’s changes reflect that position. The move was made ahead of the Federal…
Share
BitcoinEthereumNews2025/09/18 01:44
Western Union Eyes Stablecoin Card for Inflation Zones

Western Union Eyes Stablecoin Card for Inflation Zones

The post Western Union Eyes Stablecoin Card for Inflation Zones appeared on BitcoinEthereumNews.com. Western Union is building a stablecoin-backed prepaid card targeting countries with high inflation rates. Summary Western Union is creating a stablecoin-backed prepaid card for inflation-heavy economies. The USDPT token on Solana launches in 2026, integrating with the firm’s remittance network. Partnership with Rain enables Visa stablecoin cards and crypto-to-cash conversions. The money transfer giant plans to offer the product in markets where local currency depreciation erodes purchasing power, CFO Matthew Cagwin told the UBS Global Technology and AI conference. Cagwin pointed to Argentina as a prime use case, where inflation exceeded 200% last year. The dollar-denominated card would help preserve value for remittance recipients in economies facing rapid currency devaluation. Rain partnership brings Visa stablecoin cards Western Union has partnered with Rain to issue Visa cards linked to stablecoins. The collaboration allows users to convert digital assets stored in wallets connected to Rain’s platform into local cash at Western Union branches. The company is building on-ramps and off-ramps within its digital asset network to reduce banking system dependence and accelerate fund settlement. “We’re working with several providers to build this infrastructure,” Cagwin stated. Western Union plans to launch the US Dollar Payment Token (USDPT) in 2026, a stablecoin issued by Anchorage Digital on the Solana network. The token will integrate with the company’s broader digital asset strategy. The prepaid card will function as a bridge between stablecoins and everyday spending in high-inflation economies. Users receive remittances loaded onto cards denominated in dollars. The cards can be spent at merchants or withdrawn as cash at Western Union locations. Company reverses decade-long crypto skepticism Western Union maintained a dismissive stance toward cryptocurrencies for years. In 2017, Chief Technology Officer David Thompson questioned Bitcoin’s viability as currency, comparing crypto to commodities rather than functional money. The company argued that digital assets lacked governance,…
Share
BitcoinEthereumNews2025/12/07 02:47